

When the sea follows the sky: Lunar Illumination and Spawning Cycles in Fish

Naveena T^{1*}, Abinesh C², Subash M³, and Sivanesan R⁴

¹PG scholar, Department of Fish physiology and Biochemistry,

Central Institute of Fisheries Education, Versova, Mumbai,

²PG scholar, Department of Fisheries Resource Management,

College of Fisheries Science, Veraval, Gujarat

³PG scholar, Department of Fish Genetics and Breeding,

Central Institute of Fisheries Education, Versova, Mumbai.

⁴Fish biologist, Vantara (Green zoological rescue and rehabilitation centre), Jamnagar, Gujarat.

*Corresponding author Email: rocknaveenat@gmail.com

ABSTRACT

Because it affects tidal movements and nighttime illumination, the lunar cycle has a remarkable effect on fish reproduction. In order to provide the best conditions for fertilization, larval dispersal, and survival, many species time their spawning activities with particular phases of the moon. Fish use specialized photoreceptors and neuroendocrine systems that involve gonadotropic hormones and melatonin to sense these lunar cues. Because this synchronization improves larval transport and decreases predation, evolution has favoured it. These natural cycles are threatened by human activities like artificial light at night (ALAN) and overfishing during the lunar spawning peaks. The conservation of coastal ecosystems and sustainable fisheries management depend on an understanding of how moonlight coordinates reproductive cycles.

KEYWORDS: Lunar light, fish, melatonin, spawning

INTRODUCTION

For centuries, fishermen have observed that fish "bite better around the full moon." There is a solid scientific foundation for this traditional knowledge. For many marine creatures, the moon serves as a natural clock due to its gravitational pull and light. Its phases affect biological functions like migration, feeding, and reproduction, in addition to controlling tides. Fish use the lunar cycle as a crucial cue to time their spawning activities. Lunar-synchronized spawning is a phenomenon where entire populations release gametes simultaneously around particular moon phases. Scientists have now begun to unravel how this celestial rhythm governs reproductive physiology and behavior, revealing a fascinating link between the moon's glow and life beneath the waves (Ikegami, 2014).

LUNAR RHYTHMS AND SPAWNING PATTERNS

The moon affects two major environmental factors: moonlight intensity and tidal amplitude. Both are essential to the

timing of reproduction. During full or new moons, coral reef fishes, including groupers, snappers, and rabbitfish, congregate in dense spawning aggregations. Larval survival and fertilization efficiency are improved by these coordinated events (Sponaugle et al., 2004). Breeders in the intertidal zone: In order to ensure that their eggs are transported to safer nursery grounds, fish that live in mangrove zones and coastal flats frequently spawn during spring tides, which are marked by new and full moons (Ikegami, 2014). Models of comparison: Corals and marine worms exhibit similar lunar-linked spawning patterns, indicating that tidal and moonlight cues are ingrained evolutionary signals in marine taxa (Lin et al., 2021).

HOW IS THE MOON DETECTED BY FISH?

Fish use both light-based and tidal mechanisms to detect changes in the moon.

1. Moonlight as a clear indicator: Fish have extraocular photoreceptors in their brains and pineal glands that are able to pick up on minute variations in nighttime light. Melatonin secretion, which controls gonadal maturation and spawning timing, is influenced by variations in moonlight intensity (Takemura et al., 2010). According to experiments, fish exposed to artificial moonlight continuously may experience irregularities in their natural reproductive cycles (Fukunaga et al., 2022).

2. Hydrodynamic and tidal cues: Another reproductive signal is the water movement that results from the tides being driven by the moon's gravitational pull. The likelihood that eggs and larvae will be carried to appropriate nursery habitats is increased when spawning is timed to coincide with spring tides. For coastal and intertidal spawners, this is especially crucial (Ikegami, 2014).

3. Clock and Harmonic Systems: According to endocrine research, fish might have biological clocks that run on the moon in addition to their circadian cycles. Lunar illumina-

tion modulates dopamine, melatonin, and gonadotropin-releasing hormones (GnRH), connecting environmental cues to reproductive readiness (Takemura et al., 2010).

LUNAR SPAWNING'S ADAPTIVE SIGNIFICANCE

There are various benefits to aligning reproduction with lunar cycles from an evolutionary perspective. Avoiding predators: It is possible to lessen visual predation on eggs and larvae by spawning during darker new moons. On the other hand, brighter nights might facilitate orientation and feeding for larvae (Shima et al., 2019).

Larval survival and dispersal: Eggs and larvae are transported to favorable habitats or retained close to reefs when spawning is timed to coincide with tidal cycles (Sponaugle et al., 2004).

Predator-swamping effect: Groupers and rabbitfish use this tactic to increase overall reproductive success when numerous individuals spawn at the same time, overwhelming predators (Ikegami, 2014).

LUNAR IMPACTS ON SEX DETERMINATION AND GROWTH

Recent studies suggest that lunar cues could affect offspring development in addition to spawning. Faster growth rates and, occasionally, different sex ratios are observed in larvae hatched during specific moon phases (Shima et al., 2020). Analysis of the otolith (ear bone) shows growth rings that correspond with lunar periodicity, indicating that the lunar cycle has been physiologically imprinted for a long time.

IMPACTS ON HUMANITY: NIGHT ARTIFICIAL LIGHT (ALAN)

Artificial light pollution is one of the most urgent contemporary threats to lunar synchronization. Natural moonlight is obscured by the continuous nocturnal lighting created by offshore industries, harbors, and coastal development.

Studies show that artificial illumination disrupts melatonin rhythms and delays or suppresses spawning in several marine species (Fukunaga et al., 2022). Fish populations may consequently lose reproductive synchrony, which would result in poorer recruitment and population decline.

IMPLICATIONS FOR FISHERIES AND CONSERVATION

The repopulation of numerous commercially significant fish stocks depends on lunar-linked spawning aggregations. They are susceptible to targeted overfishing during aggregation periods, however, because these events are predictable. Lunar calendar-based management techniques, such as temporal fishing prohibitions or marine protected areas, can aid in the protection of spawning peaks. In order to maintain natural lunar cues, conservationists also stress

the importance of lowering light pollution in coastal areas (NOAA, 2023).

CONCLUSION

By coordinating the timing of reproduction through its light and tides, the moon serves as a cosmic metronome for marine ecosystems. Fish populations rely on these evolutionarily-fine-tuned lunar rhythms for survival and ecological balance. However, this natural symphony is in danger of being muffled by human activity, especially uncontrolled fishing and artificial lighting. Sustainable fisheries management and biodiversity conservation both depend on the identification and preservation of moon-driven reproductive cycles. Knowing how moonlight controls life beneath the sea becomes not only a scientific endeavor but also a conservation necessity as we light up coastlines and change natural rhythms.

REFERENCES

1. Fukunaga, K., Takeuchi, Y., Yamauchi, C., & Takemura, A. (2022). Induction of spawning under artificial moonlight in the honeycomb grouper *Epinephelus merra*, a lunar-synchronized spawner. *Biological Rhythm Research*, 53(12), 1880-1893.
2. Ikegami, T., Takeuchi, Y., & Takemura, A. (2014). Lunar clock in fish reproduction. In *Annual, lunar, and tidal clocks: patterns and mechanisms of Nature's enigmatic rhythms* (pp. 163-178). Tokyo: Springer Japan.
3. Ikegami, T., Takeuchi, Y., Hur, S. P., & Takemura, A. (2014). Impacts of moonlight on fish reproduction. *Marine genomics*, 14, 59-66.
4. Lin, C. H., Takahashi, S., Mulla, A. J., & Nozawa, Y. (2021). Moonrise timing is key for synchronized spawning in coral *Dipsastraea speciosa*. *Proceedings of the National Academy of Sciences*, 118(34), e2101985118.
5. Shima, J. S., & Swearer, S. E. (2019). Moonlight enhances growth in larval fish. <https://doi.org/10.1002/ecy.2563>
6. Shima, J. S., Osenberg, C. W., Noonburg, E. G., Alonso, S. H., & Swearer, S. E. (2021). Lunar rhythms in growth of larval fish. *Proceedings of the Royal Society B*, 288(1942), 20202609.
7. Sponaugle, S., & Pinkard, D. (2004). Lunar cyclic population replenishment of a coral reef fish: shifting patterns following oceanic events. *Marine Ecology Progress Series*, 267, 267-280.
8. Takemura, A., Rahman, M. S., & Park, Y. J. (2010). External and internal controls of lunar-related reproductive rhythms in fishes. *Journal of fish biology*, 76(1), 7-26.